
Learning Graphical Concepts

Kevin Ellis∗
Department of Brain & Cognitive Sciences

MIT

Eyal Dechter
Department of Brain & Cognitive Sciences

MIT

Ryan P. Adams
School of Engineering & Applied Sciences

Harvard University

Joshua B. Tenenebaum
Department of Brain & Cognitive Sciences

MIT

Abstract

How can machine learning techniques be used to solve problems whose solutions
are best represented as computer programs? For example, suppose a researcher
wants to design a probabilistic graphical model for a novel domain. Searching
the space of probabilistic models automatically is notoriously difficult, especially
difficult when latent variables are involved. However, researchers seem able to
easily adapt commonly used modeling motifs to new domains. In doing so, they
draw on abstractions such as trees, chains, grids and plates to constrain and di-
rect the kinds of models they produce. This suggests that before we ask machine
learning algorithms to discover parsimonious models of new domains, we should
develop techniques that enable our algorithms to automatically learn these “graph-
ical concepts” in much the same way that researchers themselves do, by seeing
examples in the literature. One natural way to think of these graphical concepts is
as programs that take sets of random variables and produce graphical models that
relate them. In this work, we describe the CEC algorithm, which attempts to learn
a distribution over programs by incrementally finding program components that
commonly help to solve problems in a given domain, and we show preliminary
results indicating that CEC is able to discover the graphical concepts that underlie
many of the common graphical model structures.

1 Introduction

The vast majority of research in machine learning is focused on utilizing large amounts of noisy data
living in high-dimensional, real-valued vector spaces. Such research has been immensely successful
and has enabled automatic and accurate modelling on a scale that was previously infeasible. How-
ever, when we want to build a car, draw a painting, or design the machine learning models to which
we apply our new algorithms and techniques, we face problems that current machine learning tools
are unable to handle. The highly structured objects that humans produce seems to require a different
representation than the ones which machine learning algorithms have most successfully employed.

One example of a structured representation we would like to be able to learn is the probabilistic
graphical model. Machine learning researchers make frequent use of graphical motifs and abstrac-
tions such as trees, chains, rings, grids, mixtures, and plates to constrain the space of graphical
models they consider. But how do they learn that these are good motifs? How do they learn how to
use and combine them to design new models?

One hypothesis is that these motifs and abstractions are best represented as programs that manipulate
and compose graph operations. In this work, we discuss how one could learn these motifs and

∗Questions and correspondence should be sent to ellisk@mit.edu.

1

mailto:ellisk@mit.edu

abstractions by finding programs that generate common graphical models. In particular, we present
the CEC algorithm, a general purpose multitask program induction algorithm. We discuss how
CEC can be used to extract from a set of examples the kind of abstract knowledge that machine
learning researchers bring to the task of designing graphical models, and we speculate that learning
such representations can assist in the difficult tasks of automatically finding good latent-variable
graphical models for novel datasets.

2 The CEC Algorithm

The CEC algorithm takes a library of primitives and a set of related tasks to solve; its goal is to
produce a set of programs that solve these tasks. Like the EC algorithm [2], of which it an extension,
the CEC algorithm maintains a distribution D over programs. In each iteration, CEC does two
things: first, it uses D to explore the space of programs; and second, it compresses the solutions it
found to generate a new weighted library of primitives that define an updated distribution.

Following [2] and [8], CEC learns programs expressed in simply typed combinatory calculus [11]
The simplicity of the combinatory calculus makes describing a distribution over its expressions
particularly simple. A more detailed explanation and discussion of this program representation can
be found in [2, 8].

2.1 Generative Model

The CEC algorithm can be expressed as MAP inference in a probabilistic generative model. This
generative model captures two intuitions: 1) for a set of related tasks, useful programs are composed
of useful subparts, and 2) short programs are a priori more likely than long programs.

1 G ∼ PG(·) // Description-length prior
2 `n ∼ Uniform(1, L) // Draw number of subprograms in nth program
3 // Draw ρn, the nth program, by composing its subprograms, ein
4 ein ∼ Pe|G(·|G)
5 ρn = e`nn (e`n−1n (· · · e1n))
6 // Draw tn by adding noise εn to the output of ρn
7 εn ∼ Pnoise(·)
8 tn = EVAL(ρn) + εn

Figure 1: The generative model underlying the SEC algo-
rithm.

Our generative model assumes that
the programs are themselves con-
structed by composing program frag-
ments that are drawn from a com-
mon stochastic grammar. We write
G to indicate this grammar, which is
drawn from a distribution over gram-
mars that is biased towards grammars
with smaller descriptions lengths. We
write {ρn}Nn=1 to indicate the N pro-
grams, each of which solves one of
the N tasks. We write {ein}

`n
i=1 to in-

dicate the `n program fragments that
are composed to create ρn, where `n
is drawn uniformly from 1 to L, the
maximum program length. The set {tn}Nn=1 refers to the tasks we want to write programs to solve.
We use how well a program ρn solves task tn as a surrogate for the likelihood function P (tn|ρn).
This generative model is shown in Figure 1.

2.2 Inference

We implement a version of the EM algorithm [3] for MAP estimation of the grammar, G, given the
tasks, {tn}. The hidden data in this case is the latent program that solves each task.

The joint distribution factorizes as

P (G, {ρn}, {tn}) =
1

LN
P (G)

∏
n

P (tn|ρn)P (ρn|G), (1)

where P (ρn|G) =
∏

i P (e
i
n|G). From equation (1), the EM updates are

q(ρn) ∝ P (tn|ρn)P (ρn|Gold) (2)

Gnew = argminG

(
− lnP (G)−

∑
n

Eqn [lnP (ρn|G)]

)
(3)

2

Exact computation of the normalizing constant in equation (2), or the expectation in equation (3),
would require summing over the infinite space of programs that can be generated from the grammar.
To approximate this expectation, we perform a heuristic search over the space of programs, with the
goal of finding those programs for which q(·) is high.

The CEC algorithm uses beam search [12] to maximize q(·). The beam is initialized with the
programs with the highest prior probability according to the grammar G. Similarly, the search
moves considered are those functions with the highest prior probability under G.

Equation (3) has a natural interpretation as a form of compression. Interpreting negative log proba-
bilities as description lengths, the update (3) picks the grammar minimizing the sum of the descrip-
tion length of the grammar, plus the expected description length of the programs found to solve the
tasks. A slight generalization of the Neville-Manning algorithm [9] permits tractible approximate
minimization of (3).

3 Learning to Construct Graphical Models

Learning the structure of graphical models that capture the independencies underlying a dataset is
an active area of research[1][13][4][6]. Graphical model structures enforce the conditional indepen-
dences a modeler believes exists among latent and observed random variables[10]. In practice, the
sorts of graphical models that humans design – Hidden Markov Models, phylogenetic trees, topic
models, Ising models – exhibit certain symmetries and recursive structures that might be amenable
to synthesis by programs.

1 2 3

1 2 3

1 2 3

1 2 3

4 5 6

1 2 3

1 2 3

4 5 6

[], ,

[], ,

[[]
[]]

, ,
, ,

,

1 2 3[], ,
1 2 3

1 2 3[], ,
1 2 3

1 2 3[], ,
1

2

3

Independent

Chain

Graph Types Example Input Output

Grid

HMM

Star

Cylinder

1 2 3[], ,Ring 1

2

3

Figure 2: Example input/output pairs
of learned programs. Each induced
program takes as input an arbitrarily
large list of observed nodes and pro-
duces an undirected graphical model.
Labeled/unlabeled nodes correspond to
observed/latent variables.

1

52

4

3 6
(,)

1

52

4

3 6

UnionC

1

52

4

3 6
(,)

1

52

4

3 6

UnionHT

1

22

1

3 3
(,)

1

52

4

3 6

UnionD

1

22

1

3 4
(,)

1

2

3 4

Union

Figure 3: Graph combinators in initial library.
Union: computes union of vertexes and edges.
UnionC: adds edges between corresponding ver-
texes. UnionHT: adds edge between first (head)
vertex and last (tail) vertex. UnionD: relabels in-
put graph vertices so that they do not overlap and
then computes union.

3.1 Experimental Setup

We wanted to use the CEC algorithm to learn the common abstractions and motifs that underlie
the graphical models that are commonly found in the machine learning literature. To that end, we
supplied CEC with a set of twelve tasks, each of which corresponds to learning how to build a
specific type of graphical model, potentially with latent vertexes, given that it is provided with a list
of observed vertexes. A partial list of the tasks is shown in Figure 2. For example, the CYLINDER

3

task requires CEC to build a program that takes as input a list of observed vertices (of any length)
and produces a graph with one ring consisting of the observed vertexes and the other consists of
corresponding latent variables. Tasks were specified via a set of input/output test cases, and we
defined the score of a program on a task to be the fraction of test cases it passed.

The CEC algorithm was provided with an initial library of primitive combinators, which included
the basis combinators of the combinatory calculus and functional list operations such as MAP and
FOLDR/FOLDL. We also included four binary operations on undirected graphical models, each of
which computes a union between two graphs. These graph operations are diagrammed in Figure 3.

3.2 Results

We ran the CEC algorithm on the set of twelve tasks. The algorithm is parameterized by the frontier
size (the number of unique programs drawn from the library on each iteration). With a frontier
size of 1000, the algorithm solves 7/12 tasks. With a frontier size of 5000, the algorithm solves
8/12 tasks. In each case, the algorithm returns solutions that partially satisfy the remaining tasks.
Figure 4 shows CEC’s solution to the CYLINDER task. Initially, CEC is unable to find solutions
to the complicated graph structure tasks, such as the Ising Model or the Hidden Markov Model,
even after enumerating ≈ 4 million programs through its heuristic search. However, it is able to
find programs that generate simpler graphical models, such as Markov chains. By compressing the
solutions to these simpler problems, it modifies its search procedure and, in subsequent iterations,
learns more successful programs.

1 2 3

1

2

3

1

2

3

1 2 3

Foldr UnionC []

�x. UnionHT x (I x)

1

2

3
I

Flip

UnionC

Figure 4: The program generates a cylinder from nodes by
generating two rings – one latent, one visible – and connect-
ing them.

What grammars does CEC learn, and
how do they enable the bootstrap
learning of more complicated pro-
grams? The simplest example is
how the Markov chain bootstraps the
learning of the Ising model. Af-
ter one iteration, the program frag-
ment (FOLDR UNIONC), used in the
Markov chain program, is incorpo-
rated in to the grammar. On the
second iteration, the Ising model
is learned using this fragment, pro-
ducing the program (((S B) MAP)
((FOLDR UNIONC) NULL)).

4 Discussion

To be clear, what we have shown so
far does not provide a way to learn
the structure of a graphical model di-
rectly from observed data. Rather,
this work suggests that we may be
able to learn automatically an induc-
tive bias that will subsequently make
learning graphical model structures more efficient. Some of the programs that CEC includes in its
library correspond to graph transformations, and we think that using these transformations as search
operators will make structure learning of graphical models with latent variables a more tractable
proposition than it currently is.

The notion that an appropriate inductive bias might help in the structure learning of graphical models
is not new: [7] shows that the inductive bias induced via multitask learning helps a search algorithm
find accurate graphical model structures. But while work in this field has focused on how to evaluate
a given graph, we hope to show that CEC can learn appropriate search operators directly from a set
of training examples.

4

References
[1] Ryan Prescott Adams, Hanna M. Wallach, and Zoubin Ghahramani. Learning the structure

of deep sparse graphical models. Journal of Machine Learning Research: Workshop and
Conference Proceedings (AISTATS), 9:1–8, 05/2010 2010.

[2] Eyal Dechter, Jonathan Malmaud, Ryan P. Adams, and Joshua B. Tenenbaum. Bootstrap learn-
ing via modular concept discovery. In Francesca Rossi, editor, IJCAI. IJCAI/AAAI, 2013.

[3] A. P. Dempster, M. N. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
39:1–22, 1977.

[4] N Friedman and D Koller. Being Bayesian about network structure. A Bayesian approach
to structure discovery in Bayesian networks. Machine Learning, 50(1-2):95–125, JAN-FEB
2003.

[5] Johannes Fürnkranz and Thorsten Joachims, editors. Proceedings of the 27th International
Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel. Omnipress,
2010.

[6] David Heckerman, Dan Geiger, and David Maxwell Chickering. Learning bayesian networks:
The combination of knowledge and statistical data. CoRR, abs/1302.6815, 2013.

[7] Jean Honorio and Dimitris Samaras. Multi-task learning of gaussian graphical models. In
Fürnkranz and Joachims [5], pages 447–454.

[8] Percy Liang, Michael I. Jordan, and Dan Klein. Learning programs: A hierarchical bayesian
approach. In Fürnkranz and Joachims [5], pages 639–646.

[9] Craig G. Nevill-Manning and Ian H. Witten. Identifying hierarchical structure in sequences:
A linear-time algorithm. CoRR, cs.AI/9709102, 1997.

[10] Judea Pearl. Probabilistic reasoning in intelligent systems - networks of plausible inference.
Morgan Kaufmann series in representation and reasoning. Morgan Kaufmann, 1989.

[11] Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.
[12] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson

Education, 2 edition, 2003.
[13] Ioannis Tsamardinos, Laura E. Brown, and Constantin F. Aliferis. The max-min hill-climbing

Bayesian network structure learning algorithm. Machine Learning, 65(1):31–78, OCT 2006.

5

	Introduction
	The CEC Algorithm
	Generative Model
	Inference

	Learning to Construct Graphical Models
	Experimental Setup
	Results

	Discussion

