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Abstract

Conventional models of exemplar or rule-based concept learn-
ing tend to focus on the acquisition of one concept at a time.
They often underemphasize the fact that we learn many con-
cepts as part of large systems rather than as isolated individu-
als. In such cases, the challenge of learning is not so much in
providing stand-alone definitions, but in describing the richly
structured relations between concepts. The natural numbers
are one of the first such abstract conceptual systems children
learn, serving as a serious case study in concept representa-
tion and acquisition (Carey, 2009; Fuson, 1988; Gallistel
& Gelman, 2005). Even so, models of natural number learn-
ing focused on single-concept acquisition have largely ignored
two challenges related to natural number’s status as a system
of concepts: 1) there is an unbounded set of exact number
concepts, each with distinct semantic content; and 2) people
can reason flexibly about any of these concepts (even fictitious
ones like eighteen-gazillion). To succeed, models must instead
learn the structure of the entire infinite set of number concepts,
focusing on how relationships between numbers support refer-
ence and generalization. Here, we suggest that the latent pred-
icate network (LPN) — a probabilistic context-sensitive gram-
mar formalism — facilitates tractable learning and reasoning
for natural number concepts (Dechter, Rule, & Tenenbaum,
2015). We show how to express several key numerical rela-
tionships in our framework, and how a Bayesian learning al-
gorithm for LPNs can model key phenomena observed in chil-
dren learning to count. These results suggest that LPNs might
serve as a computational mechanism by which children learn
abstract numerical knowledge from utterances about number.

Keywords: child development; concept learning; number;
generalization; computational model; grammar induction

Introduction

Humans seldom learn concepts in isolation. We learn about
left by comparing and contrasting it with up, down, and right,
and about red by noting its similarities and differences with
green and blue. The natural numbers (1, 2, 3, ...) are no
exception: to understand a number such as one, we must not
only ground it in terms of concepts and percepts we already
know, but we must also relate it to other number concepts
we are still in the process of acquiring. The natural numbers
are particularly interesting in this respect. Because they are
infinite, there is no way to learn all the individual concepts
without learning a compositional structure for the system.

A great deal of empirical work has focused on the first part
of this problem, on how initial number concepts are grounded
in counting routines and the core systems of approximate
magnitude and parallel object individuation (Carey, 2009;
Dehaene, 2011; Feigenson, Dehaene, & Spelke, 2004). Re-
cent studies have also proposed computational mechanisms to
explain several key behavioral changes during early number
learning (Piantadosi, Goodman, & Tenenbaum, 2012).

Far fewer studies have focused on the second half of the
problem, on how numbers are learned as a system and par-
tially defined with respect to each other. While the problems

of how children link physical sets with the counting routine
and develop their first number concepts are crucial, we direct
our attention elsewhere in this paper. We focus on this sec-
ond problem, on how children might acquire knowledge of
an infinite number system, particularly for numbers they hear
discussed but are unlikely to ever see counted out explicitly.

We ground our learning proposal in a new framework for
representing number as a conceptual system, which on its
own has presented a non-trivial challenge met in different
ways by linguists and developmentalists. For example, Hur-
ford (1975) proposed a single system differentiating primitive
and compound number concepts, while Siegler and Robinson
(1982) proposed a system with several stages of development,
each containing minimal internal structure.

Our approach to representation and learning is in part in-
spired by, and shares much in common with, the recent fam-
ily of Rational Rules models (Goodman, Tenenbaum, Feld-
man, & Griffiths, 2008; Piantadosi et al., 2012; Ullman,
Goodman, & Tenenbaum, 2012), exploring concept learning
through Bayesian induction of compositional representations
using sparse evidence. We agree that this framework is fun-
damental to understanding concept learning.

The major difference is in how our models represent con-
cepts. In Rational Rules models, each concept is a sin-
gle stand-alone rule supported by its own evidence. These
rules are generated from a static grammar which defines the
hypothesis space. Learning is determining which concepts
(which rules) are supported by the evidence. In the model
we present here, concepts are not stand-alone rules, but net-
works of possible relations generated according to a grammar.
The hypothesis space is thus not over stand-alone rules gen-
erated by a prespecified grammar, but over millions of possi-
ble grammars, each defining a different network of relations.
Learning is determining which grammar, which sets of rela-
tions, are supported by the evidence.

We begin by discussing how to represent the infinite con-
ceptual system of natural number, and show how a particular
formalism — the Probabilistic Range Concatenation Grammar
(PRCG) — can represent number concepts this way (Boullier,
2005). We then show how a portion of this grammar can
be learned using Bayesian inference in an LPN, a learning
framework for PRCGs (Dechter et al., 2015).

A Grammar Representing Number Knowledge

Three challenges make learning systems of number concepts
particularly difficult and interesting. First, very few number
concepts are perceptually grounded. When, for example, did
you last count exactly 254 objects? The problem only inten-
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sifies as we begin applying numbers to events, time periods,
sets of objects, and eventually even other numbers. Second,
the fact that there are infinitely many number concepts means
that, much like in natural language sentences, the meanings of
the numbers are compositional. The meaning of four-hundred
fifty-two, for example, depends on but goes significantly be-
yond the meanings of four and hundred. Third, to under-
stand numbers is also to understand the relations in which
numbers participate. We are often interested in a number not
for its cardinality but for some more complex property, such
as whether it is more or less than another number or how it
changes through addition or division. This diverse range of
uses makes it impossible to fully describe three without ref-
erencing two, four, and eventually all other numbers.

How can we hope to represent systems of concepts which
are: 1) learnable without direct perceptual grounding; 2)
compositionally constructed; and 3) relationally defined?
Happily, these properties are similar to those linguists face
in studying natural language syntax. Grammars can be in-
duced directly from a stream of utterances, are highly com-
positional, and define their constituents based on their rela-
tionships to each other rather than as discrete objects.

Motivated by this insight, we now present a grammar of
number knowledge we have constructed to capture five key
number relations learned during childhood and carried into
adulthood: Number, capturing the distinction between valid
and invalid number words; Succ and Pred, the successor and
predecessor relations, respectively; and More and Less, the
more-than and less-than relations, respectively. While seem-
ingly basic tasks, children require years to master them (Fu-
son, Richards, & Briars, 1982). Whereas most work in natu-
ral language syntax uses context-free grammars, our focus on
capturing structural relationships between concepts demands
that we use a context-sensitive grammar. We specifically
use PRCGs because they are expressive and context-sensitive
while remaining relatively tractable (Boullier, 2005).

Capturing these relations with an RCG is not only possi-
ble but can be done quite compactly. Our grammar for the
concepts of Number, Succ, Pred, Less, and More covers all
numbers between zero and one-quadrillion, exclusive, and re-
quires only 218 rules. Even considering just Number, Succ,
and Pred, these 218 rules cover more than 1024 true relations.
Figure 1 shows a schematic of the rules concerned with de-
termining valid and invalid numbers, while the rest, due to
space constraints, can be found online (https://git.io/
ruleEtA12015CogSci).

Three clarifications: first, our grammar never produces nor
parses full English sentences. We model the structure of con-
cepts, not the structure of language. When attempting to
parse something like Succ(ninety nine, one hundred), we as-
sume another system more directly involved in language pre-
processes utterances into predicates which are then checked
against the knowledge encoded in our conceptual grammar.
Second, this grammar has not been optimized for compact-
ness or efficiency. We focus on providing a grammar that is

correct, human-readable, and fits a prefix-base-suffix under-
standing of number, as discussed below. We do not claim this
particular grammar is used by children or adults but rather
that this framework, regardless of the specific grammar given,
captures important aspects of concept learning, such as the
rich and systematic relations between concepts, that are un-
deremphasized in other models. Third, while the natural
numbers form an infinite set, many numbers do not have con-
venient names. Our choice to examine what can be learned
from conventional number names analyzed as words, rather
than as morphemes or phonemes, means we examine only a
finite subset of the natural numbers.

Intuitively, a number word like six-hundred thirty-seven
is valid because we have six units of one hundred each and
thirty-seven remaining units of one each. That is, we have
some base unit (hundred) and we track both how many of
them we have (six), and how many of the next smallest
base unit (one) we have (thirty-seven). We denote the sum
of these (six-hundred + thirty-seven) simply by concatenat-
ing the two terms from largest to smallest base (six-hundred
thirty-seven). This structure is recursive. Nine-thousand
seven-hundred sixteen is created by taking nine thousands
units and tacking on a remainder, which is seven hundreds
plus its remainder of sixteen ones: nine X thousand + (seven
X hundred + (sixteen X one)). Note that there is no explicit
mention of the base one in a valid number word - it is implied
and marked by appending &, the empty string, instead of one.

Our grammar similarly uses a prefix-base-suffix system,
and Figure 2 shows the concepts involved in deciding that
six-hundred thirty-seven is a valid number word. As in our
example above, we must show that six is a valid prefix for
hundred and thirty-seven is a valid suffix or remainder:

Number(six hundred thirty seven) < (1)
Prefix(six, hundred), Suffix(hundred, thirty seven).

Six is a valid prefix for hundred because it is a number word
representing a ones number, a number between one and nine.
It would be incorrect for hundred to have no prefix, and it
would also be incorrect to use a prefix larger than nine:

Prefix(six, hundred) <— Ones(six). ()

Thirty-seven is a valid suffix because it is a valid number for
a previous base, in this case &, the ones base:

Suffix(hundred, thirty seven) < 3)
LargerBase(hundred, &), Number(thirty seven).
LargerBase(hundred, &) < PrevBase(hundred, o).  (4)

Thirty-seven is one of these numbers because it is merely the
concatenation of a decade word and a ones word:

Number(thirty seven) < ®)
Prefix(thirty seven, @), Suffix(&, &).

Prefix(thirty seven, &) < (6)
Decades(thirty), Ones(seven).
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Ones(one). (1, 5) Number(PBS) + Prefix(P, B), Suffix(B, S). Prefix(P, B) < LargerBase(B, hundred), NormalPrefix(P).
Number(PB) <+ Prefix(P, B). (2) Prefix(P, hundred) < Ones(P).
Ones(nine). Prefix(X, @) < Ones(X).
LargerBase(X, Z) < LargerBase(X,Y), LargerBase(Y,Z). Prefix(X, @) + Teens(X).
Teens(ten). (4) LargerBase(X,Y) < PrevBase(X,Y). Prefix(X, @) < Decades(X).
. (6) Prefix(XY, @) + Decades(X ), Ones(Y).
Teens(nineteen). PrevBase(million, thousand).
PrevBase(thousand, hundred). NormalPrefix(S)  Suffix(thousand, S).
Decades(twenty). PrevBase(hundred, @).
e (3) Suffix(B, PCS) < LargerBase(B, C'), Number(PCS).
Decades(ninety). Suffix(@, @).

Figure 1: An RCG whose strings are valid number words. Numbered rules correspond to Figure 2.

(1) Number(six hundred thirty seven)
/ \
(2) Prefix(six, hundred) (3) Suffix(hundred, thirty seven)
T e ~
Ones(six). (5) Number(thirty seven)

\

(4) LargerBase(hundred, @).

e
(6) Prefix(thirty seven, &)

- ~
Decades(thirty).

e
PrevBase(hundred, @).

Ones(seven).

PrevBase(hundred, @). MaxForBase(ninety nine, @) Succ(one,two)

Suffix(@, ).

Succ(one hundred ninety nine, two hundred)

//\\

Prefix(two, hundred)

N I [

MaxDecades(ninety). MaxOnes(nine). Succl(one,two). Ones(two).

Figure 2: Example RCG parses for Number (Blue) and Succ (Red) relations.

The compositional use of simple predicates thus helps us ana-
lyze the structure of a complex phrase like six-hundred thirty-
seven and show that while it is a valid number word, hun-
dred six seven thirty is not. Succ can similarly be encoded
(Figure 2) as can More (not shown), while Pred and Less
can be encoded quite simply as Less(X,Y) < More(Y,X) and
Pred(X,Y) < Succ(Y,X).

Learning Number Knowledge

How might children learn the number knowledge captured in
the representation above? In this section, we present a com-
putational model of learning PRCGs and take a first step to-
ward evaluating this model against the learning trajectories
and patterns of error reported in the literature on counting.

To match the literature’s focus on counting, we restrict our
experiments here to the successor relation, and, in particular,
to learning to count from one to one-hundred. Several stud-
ies track children’s learning trajectories and patterns of er-
rors when acquiring the count sequence (Fuson et al., 1982;
Miller & Stigler, 1987), making count sequence learning
an interesting domain for evaluating our model of learning
PRCGs against empirical data.

Latent Predicate Networks Latent Predicate Networks
(LPNs) are PRCGs with three types of predicates connected
in a layered fashion. Observed predicates are relations di-
rectly present in the data (e.g. Succ is observed if the data
includes Succ relations). Observed predicates are defined in
terms of layers of latent predicates. These relations are not
directly observable in the data and their meanings are deter-
mined through learning. For example, the Decade predicate,
which is true for “ten”, “twenty”, etc., might correspond to
one of the latent predicates after the model is trained on pairs
of successive number words. Each layer of latent predicates
is defined in terms of the latent predicate layer beneath it,

and the lowest layer of latent predicates is defined in terms
of a collection of lexicon predicates, each of which is a unary
predicate that is true of the atomic units (the words) of the
system. The rules of the LPN consist of all definitions possi-
ble within the network architecture (for details see Dechter et
al. (2015)). The parameters of the network are the probabili-
ties of the rules.

Our model learns a distribution over the parameters of the
LPN given the available data using hierarchical Bayesian in-
ference: the model assumes that there is a prior distribution
over the parameters of the LPN and, using Bayes’ rule, infers
a distribution over parameter values that balances the fit of
the observations against the prior. We use a sparsity-inducing
prior to formalize the intuition that latent predicates and rules
should be shared in order to learn grammars that can general-
ize beyond the observed data.

Since exact inference in probabilistic grammars is compu-
tationally intractable, our model is simulated using the Vari-
ational Bayes EM approximate inference algorithm as imple-
mented in the PRISM programming language (Sato, Kameya,
& Kurihara, 2008).

All the simulations below were run on an LPN with three
layers of five predicates each. The learning algorithm was
run for a single iteration with a concentration parameter of
o = 0.1, and a convergence criterion of € = le —4. We will
refer to each separate simulation below as a simulated child.

Acquiring the count sequence Fuson et al. (1982) de-
scribes qualitative phenomena of count sequence acquisition
and elaboration based on several surveys in which the authors
asked American children between three and five years of age
to count (either while counting a collection of objects or just
reciting the count word sequence). The learning trajectories
and error patterns they describe have inspired computational
modeling efforts using connectionist networks; for example,
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Figure 3: Our model compared with children’s counting data
a) Data from Fuson et al. (1982). The x-axis shows the high-
est number correctly reached when children were asked to
count starting at “one.” Boxes correspond to the standard de-
viation, central bands to the means, and whiskers to the range.
b) Model performance, averaged over ten runs at four stages
of increasing data quantity.

Ma and Hirai (1989) use an associative network to model the
errors that young children typically make when learning the
count sequence up to twenty or thirty. But, to our knowledge,
such models have not been used to study how children acquire
the count sequence beyond thirty.

Figure 3a shows the highest number correctly reached by
children of various ages when tested by Fuson et al. The au-
thors hypothesize that the large jump in range between the
young three-year-olds and the four-year-olds and five-year-
olds is due to the older children partially solving what they
term “the decade problem” — i.e. recognizing both that there
is a pattern that repeats across decades greater than twenty
and that there is a particular sequence to the decade words.

We asked whether our model goes through a similar tran-
sition. To simulate learning, we generated data sets consist-
ing of successor pairs between one and one-hundred, with the
number of examples N of each pair Succ(i,i + 1) following
the power law N = %, where K determines the overall size of
the data set. To explore the effect of evidence quantity, and
to simulate the effect that overall quantity of evidence has on
a child’s acquisition of the count list, we generated data sets
for K = 10,100,1000, 10000, which we denote stages 1-4,
respectively. The resulting histograms of data are shown in
Figure 4a-d (the y-axes are logarithmically scaled).

For each of these data sets we ran our learning algorithm
ten times, generating ten simulated children at each stage (the
simulations differ due to different random parameter initial-
izations). In Figure 4a-d, each line corresponds to one of the
simulated children and shows the probability that the child
will correctly count to the corresponding number on the x-
axis. To generate this data, we asked the model for the dis-
tribution of successors for a given number and used a simple
softmax decision procedure to determine the probability of
the simulated child reporting each word. Specifically, if the
simulated child believes x follows a with probability p,(x),
then it says x after @ with probability proportional to p,(x)?.

The stage 1 simulations are variable in performance, with
some of simulated children unable to count further than the
first few words and a few having a relatively high chance
of reaching “twenty.” The sharp drops in performance at
“twenty,” “thirty”” and “forty” in stage 2, and the horizon-
tal lines between them, indicate that here the simulation has
learned the within-decade structure of the count list but is un-
certain about the transitions between decades. In stages 3
and 4, nearly all simulated children master the numbers up to
“twenty nine” but are unable to transition from “twenty nine”
to “thirty.” Only in stage 4 do we see any children making the
transition from this state of knowledge to one in which they
can reach “ninety nine.”

The simulations in these first four stages suggest that even
with large increases in the quantity of data, our model is un-
likely to progress beyond “twenty nine.” We hypothesized
that this is due to a lack of evidence for the decade transi-
tions. Mastering the decade transitions requires both learning
that there is a special rule for the successor of numbers ending
in “nine,” and learning the order of the decade words. This
adds considerable complexity to the grammar, and our simu-
lations favor a more parsimonious explanation of the heavily
weighted smaller numbers. Children, however, do not learn
to count to a hundred by unsupervised exposure to naturally
occurring count words; they are actively taught to do so. Al-
though we know of no study of the pedagogical language used
in teaching children to count, some kindergarten teaching
blogs (e.g. http://www.heidisongs.com/blog/2012/05/
teaching-kids-to-count-to-100.html) mention empha-
sizing decade transitions as useful in helping struggling stu-
dents to learn the count sequence.

To confirm that increased emphasis on decade transitions
can facilitate the transition to mastering counting up to a hun-
dred, we created two additional data sets, stages 3* and 4,
that contain the same data as stages 3 and 4, respectively, but
have an additional 10% of the data evenly distributed across
the decade transitions (twenty nine, thirty; thirty nine, forty;
...; eighty nine, ninety). The simulated data for these stages is
shown in Figure 4e-f. In both simulations, we observe a sharp
increase in the number of simulated children who transition
to counting to a hundred (from O to 4 children in stage 3*, and
2 to 6 children in stage 4).

Figure 3b summarizes the simulation data for stages 1,2,3*
and 4* for comparison against the Fuson et al. data in Fig-
ure 3a. For each stage and each simulated child, we computed
the probability that the highest number reached by counting,
starting from “one,” would be x for x = 1,...,99. We aver-
aged these values across simulated children within a stage and
used the resulting densities to calculate the means, standard
deviations, and 10™ and 90 percentiles for each stage (these
percentiles were chosen to be comparable with the empirical
ranges described by Fuson et al.).

In addition to examining the learning trajectories of our
model, we also examined its mistakes. One interesting pat-
tern of mistakes that young English-speaking children make
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Figure 5: Top ten invented number words in children’s count-
ing. a) Data from Fuson et al. b) A simulated child at stage 2.

when reciting the count sequence is that they invent number
words. Fuson et al. report that children invent such words
both by combining morphological components of number
words (such as “fiveteen” and ‘“eleventy”) and by combin-
ing decade words with incorrect digit-place words (such as
“twenty-eleven” and “twenty-twenty”). In particular, they re-
port that appending teen words to decade words is most com-
mon, creating sequences like “twenty-ten”, “twenty-eleven”,
“twenty-twelve”, etc. In Figure 5a we show the most common
invented words that Fuson et al. report and the mean number
of times a child used the word.

Since we do not model in this work how number word mor-
phemes are composed to construct number words, our model
cannot account for morphologically-based errors. We asked,
however, to what extent it can model the other invented word
errors that Fuson et al. report; the most common invented
words are shown in Figure 5a. To compare these data to our
model, we asked a stage 2 simulated child for the top ten
non-number words that could appear as successor to a num-
ber word or non-number word (because this was a computa-
tionally expensive procedure, we restrict our analysis here to
a single randomly selected simulation). The marginal proba-
bilities of those non-number words is shown in Figure 5b.

Discussion

In this work, we have shown how exact number concepts and
the relations among them can be represented using probabilis-
tic context-sensitive grammars. We have also given a model
for how children might learn such representations based on
hierarchical Bayesian inference. Our simulations suggest this
model captures several behavioral phenomena children ex-
hibit while learning the count sequence — a critical and dif-
ficult prerequisite to adult-like numerical knowledge.

An interesting aspect of this process is the seemingly
sudden transition from counting only through the first few
decades to counting all the way to a hundred. Our model ex-
plains this transition as an inductive leap: for small amounts
of data, learning is slow and incremental — adding a decade
at a time — because the increased complexity of the concep-
tual knowledge is large compared to the gains in explanatory
power. Eventually, however, enough evidence accumulates to
warrant a more complex and more general grammar, resulting
in a kind of phase transition between states of knowledge.

In many ways this phenomenon is analogous to the Car-
dinal Principle (CP) transition, in which younger children
learning the relationship between small numbers and set sizes
make slow and incremental progress when learning to count
out sets matching the first three or four number words but then
suddenly expand their ability to every other memorized num-
ber word. The theory that this rapid transition is due to what
Carey (2009) refers to as Quinian bootstrapping has been for-
malized by Piantadosi et al. (2012) as probabilistic inference
over a space of recursive programs defined by a grammar. As
we do here, they explain the inductive leap of the CP tran-
sition as a result of the tension between program complexity
and fit to the available data. Whereas Piantadosi et al. place a
distribution over programs using a probabilistic context-free
grammar, however, our model is learning a complete gram-
mar, one that can accommodate many different concepts and
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relations and that can be seen as a probabilistic and declara-
tive knowledge base.

Another difference is that our simulations require a peda-
gogical emphasis on critical evidence — the decade transitions
— to master the count sequence robustly, suggesting that peda-
gogy may play an important role in facilitating these kinds of
inductive leaps. Focusing on concept acquisition in slightly
older children allows us to explore the relationship between
computational level considerations driving inductive reason-
ing and the pedagogical factors enabling it in practice.

An important goal for future work is to apply our model
to learning systems of number concepts in other languages
besides English. In preliminary work we have applied our
model to learning the Chinese number system and shown that
it both learns the adult system with relative ease and explains
why Chinese children generally make different patterns of
mistakes than English-speaking children — in particular, why
they are much less likely to invent number words like “twenty
eleven” even though Chinese uses the same words to refer to
both decade and ones values (e.g., “twenty one” is “two ten
one”) (Miller & Stigler, 1987).

Another important future step for this research will be to
relate our model to those, like Piantadosi et al. (2012) for
counting and Dehaene (2011) for the approximate magni-
tude system, that attempt to explain how abstract number
knowledge becomes grounded in the perceptual and procedu-
ral primitives through which children learn about the world.
The model we presented here does not attempt to explain how
children come to understand that number words refer to car-
dinalities, though this is crucial to understanding number.

That said, we see no fundamental incompatibility between
the model presented here and extensions to include approx-
imate magnitude, object tracking, set manipulation, more
complex morphology (e.g. the meaning of -illion or -teen), or
different counting strategies (e.g. as used in Turkish, French,
or Mandarin) as would be needed for a more comprehensive
model of number learning. In fact, a key next step for us is to
model the link between the relatively small set of named num-
bers (as modeled here) and the infinite set of numbers through
more complex morphology and word invention (i.e. the -illion
system, including gazillion or bajillion) or systems like Ara-
bic or tally notation, where the infinite sequence is easier
to express. We see our work here as a first demonstration
of LPN’s suitability for capturing a broad range of concepts
in number and other semantic domains including space, kin-
ship, and natural kinds. Whether these more general mod-
els are best approached by working strictly within the LPN
formalism or by using it as one module within a more com-
plex framework is an open question. Certainly, the human
mind is more powerful than an RCG and is at least Turing-
complete. RCGs provide a tractable way, however, to explore
arestricted subclass of problems. The strategies and solutions
we discover here are also available in Turing-complete sys-
tems, and are in fact implemented in one (PRISM Prolog), so
our findings easily generalize to more expressive grammars.

More broadly, we see this paper as growing out of the hy-
pothesis that much of human learning, including the explo-
sion of knowledge during development, can be understood as
inducing, from sparse and noisy data, a library of bits of con-
ceptual knowledge, written in something like a programming
language of thought. This vision of the child-as-hacker draws
on and extends the notion of the child-as-scientist (Gopnik,
1996); not only are children forming theories about the world,
but they are simultaneously developing the very conceptual
language they use to formulate those theories.
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